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Abstract

In an idealized framework, we assess reconstructions of the climate state of the South-
ern Hemisphere during the past 150 yr using the climate model of intermediate com-
plexity LOVECLIM and three data-assimilation methods: a nudging, a particle filter with
sequential importance resampling, and an extremely efficient particle filter. The meth-5

ods constrain the model by pseudo-observations of surface air temperature anoma-
lies obtained from a twin experiment using the same model but different initial con-
ditions. The net of the pseudo-observations is chosen to be either dense (when the
pseudo-observations are given at every grid cell of the model) or sparse (when the
pseudo-observations are given at the same locations as the dataset of instrumental10

surface temperature records HADCRUT3). All three data-assimilation methods provide
with good estimations of surface air temperature and of sea ice concentration, with
the extremely efficient particle filter having the best performance. When reconstructing
variables that are not directly linked to the pseudo-observations of surface air tem-
perature as atmospheric circulation and sea surface salinity, the performance of the15

particle filters is weaker but still satisfactory for many applications. Sea surface salinity
reconstructed by the nudging, however, exhibits a patterns opposite to the pseudo-
observations, which is due to a spurious impact of the nudging on the ocean mixing.

1 Introduction

Reliable reconstructions of the past climate states are essential for a comprehensive20

understanding of the climate system, more accurate climate predictions and projec-
tions. They enable to estimate the magnitude of the natural variability without an-
thropogenic impact and to provide insights into the processes responsible for climate
changes.

A new but highly appealing approach to reconstruct the past climate states is data25

assimilation, (e.g. Bhend et al., 2012; Widmann et al., 2010; Annan and Hargreaves,
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2012). The main purpose of data assimilation is to estimate the state of a system as
accurately as possible incorporating all the available information: numerical modelling
of the behaviour of the system, observations, and uncertainties of the model and of
the observations (Talagrand, 1997). When choosing a data-assimilation method, the
application to which it is applied should be kept in mind. For example, in meteorologi-5

cal applications data-assimilation methods like 4DVar (e.g. Courtier et al., 1994) or the
ensemble Kalman filter (Evensen, 1994) are employed. These methods, however suc-
cessful, are biased in the sense that they assume the Gaussian prior distribution. But
the prior distribution can take any form because the system is nonlinear.

There exists an ensemble-based data-assimilation method that does not make such10

an assumption. It is particle filtering. In particle filtering, the probability distribution func-
tion of the state is approximated by an ensemble of particles, where a particle (or en-
semble member) is a full model state obtained by running a model. In order to have
non-identical particles a perturbation is applied to initial conditions, for example. Then,
each particle is propagated forward in time using the model. When the observation be-15

comes available, the so-called importance weights are assigned to the particles based
on how close to the observation they are. Small weights are given to particles far from
the observation; large weights, to particles close to the observation. The ensemble
mean, which is the best estimate of the state, is then a sum of the particles each
multiplied by the corresponding weight.20

Particle filtering has no assumption of gaussianity, uses a full nonlinear model to
propagate the particles, but unfortunately, suffers from the “curse of dimensionality”
(Snyder et al., 2008), meaning that for a high-dimensional system and an ensemble of
small size it leads to large variances in the particles (ensemble members) and, conse-
quently, to large variance in the corresponding importance weights with only a few of25

them being relatively large. After a few data-assimilation cycles the importance weight
of a single particle becomes close to one, while the weights of the other particles be-
come close to zero. Consequently, the ensemble that has collapsed to a single particle
can no longer approximate the probability distribution function of the state. Therefore,
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particle filtering has not yet been employed for operational geophysical problems. To
overcome the limitation of degeneracy, a new particle filter has been introduced by van
Leeuwen (2010), the extremely efficient particle filter. There, the particles are guided
towards the observations during the model simulations inducing smaller variance in the
particles weights. The extremely efficient particle filter has shown good performance for5

the Lorenz-63 and the Lorenz-95 models (van Leeuwen, 2010), and for the barotropic
vorticity equation (van Leeuwen and Ades, 2013).

Paleoclimate applications are somewhat different than meteorological applications.
The system is nonlinear and high-dimensional as well, but the observations are sparse
and have large uncertainties. Moreover, the available observations allow reconstruc-10

tions of only large-scaled features averaged over several months or even years rather
than a few tenths of kilometres and six hours scales. Therefore, for a paleoclimate
application the number of degrees of freedom of the system can be reduced by per-
forming spatial and temporal averages without substantial loss of needed information.
This allows the use of a particle filter even without the “guidance” of van Leeuwen15

(2010). For instance, Goosse et al. (2009) used a particle filter with 96 members and
the dataset HADCRUT3 (Brohan et al., 2006) to reconstruct the past half-century cli-
mate state in the Southern Hemisphere. It was shown that variables like surface air
temperature averaged over large domains, sea ice area in the southern ocean, and the
southern annual mode are in agreement with the observations at an annual time scale.20

Annan and Hargreaves (2012) assessed reconstructions of annual mean temperature
anomalies over the Northern Hemisphere for the past two millennia. The reconstruc-
tions were obtained using a particle filter with 100 members and limited pseudo-proxies
of surface temperature. It was pointed out that annual temperature at the hemispheric
scale is well reconstructed, even when only 50 pseudo-proxies are used, as to the re-25

gional scale the performance is poor giving negative skill for the spatial field in some
regions.

While those applications were dealing with annual reconstructions at a large spatial
scale, our goal is to test data-assimilation methods to reconstruct the climate state with
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a more detailed spatial structure and on a seasonal time scale. Since the number of
degrees of freedom is larger when estimating seasonal variability than when estimat-
ing annual variability and the extremely efficient particle filter of van Leeuwen (2010)
was specifically developed to handle high-dimensional systems with many degrees of
freedom, we test this data-assimilation method in our experiments. Moreover, we com-5

pare the extremely efficient particle filter to a particle filter with sequential importance
resampling, which was used by Dubinkina et al. (2011), and to a nudging – a data-
assimilation method widely used by general circulation models for initializing climate
predictions (e.g. Keenlyside et al., 2008; Pohlmann et al., 2009; Swingedouw et al.,
2013).10

In our studies, we focus on the Southern Hemisphere as it is an interesting test case
for the model dynamics, including potentially complex interactions with sea ice. We em-
ploy the climate model of intermediate complexity LOVECLIM, a coupled model with
atmospheric, oceanic, and sea-ice components. As the period of interest we choose
150 yr from year 1850 until year 2000. In this period of time, the anthropogenic impact15

varies, which allows to assess the performance of a data-assimilation method under
different magnitudes of the forcing. Moreover, the study over such period of time, which
is rather short for a paleoclimatological application, gives the basis for future applica-
tions on longer time scales.

Experiments with pseudo-proxies are quite typical for paleoclimatological applica-20

tions (e.g. Smerdon, 2012), as they give more freedom in estimating skill of a method
used to obtain a climate state reconstruction. Therefore, we constrain the model by
pseudo-observations instead of instrumental records. We use pseudo-observations of
surface air temperature anomalies, since for the last centuries observations of surface
air temperature (either instrumental or proxy reconstructions) appear to be the most25

disposable. We perform two series of experiments: using the pseudo-observations
given at every grid cell over the assimilated domain and using the pseudo-observations
given at the same locations as the dataset of instrumental surface temperature records
HADCRUT3. With the latter series we aim to approach a more realistic setup for
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a paleoclimatological application but without leaving the twin-experiment framework.
The design of our experiments is close to a real application of a data-assimilation
method (e.g. Goosse et al., 2012) and, therefore, can be easily adapted for such an
application.

The paper is organized as follows: In Sect. 2, we give a description of three data-5

assimilation methods that are used for the past climate state reconstructions: the se-
quential importance resampling filter, a nudging, and the extremely efficient particle fil-
ter. In Sect. 3, we describe the climate model LOVECLIM and the experimental setup.
Results of the experiments using the dense net of the pseudo-observations are given in
Sect. 4. In Sect. 5, the performance of a data-assimilation method is addressed when10

the sparse net of the pseudo-observations is employed. Finally, conclusions are given
in Sect. 6.

2 Data assimilation methods

2.1 Particle filter with sequential importance resampling

If the discrete equation for estimating the state ψ of a model at a time tn is a function f15

of the state ψ at a time tn−1

ψn = f (ψn−1), (1)

then its M realizations, called particles, obtained using different initial conditions deter-
mine an ensemble {ψni }

M
i=1 that represents the model probability density as following20

p(ψn) = K−1
M∑
i=1

δ(ψn −ψni ), (2)

where δ is a kernel density and K is a normalization factor. (Hereinafter any normal-
ization factor will be denoted by K .) If there is no information about the model state
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a priori, any particle is equally likely. But given the observation dn of the model state
ψn Bayes theorem indicates that the posterior probability is following

p(ψn|dn) = K−1p(dn|ψn)p(ψn). (3)

After using the density (2) in the theorem (3), the posterior probability becomes5

p(ψn|dn) =
M∑
i=1

wni δ(ψn −ψni ) with wni = K−1p(dn|ψni ).

The weights {wni }
M
i=1 are computed assuming that the likelihood p(dn|ψni ) is Gaussian

p(dn|ψni ) = K−1 exp
[
−1

2
(dn −H(ψni ))TR−1(dn −H(ψni ))

]
. (4)

Here H is the measurement operator that projects a model state ψni to the location of10

the observation dn, and R is the error covariance of the observations.
The last step of the sequential importance resampling filter consists of particles re-

sampling according to their weights, which is often necessary to avoid the filter degen-
eracy. The particles with small weights are eliminated; whereas the particles with large
weights are kept. To retain the total number of the particles the remaining particles15

are duplicated and perturbed. Then, the particles are propagated forward in time by
the model until the next observation is available. After that, the importance weights are
computed again but using the new observation, and the whole procedure is repeated
until the end of the period of interest. For a more detailed description of the sequential
importance resampling filter we refer the reader to van Leeuwen (2009).20

2.2 Nudging

Nudging consists of a term that is added to the prognostic model equation in order to
pull the model state towards the observation (e.g. Hoke and Anthes, 1976). In a discrete
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form, we have

ψn = f (ψn−1)+αHT (dn −H(ψn−1))+ ξn, (5)

where α is a nudging parameter, ξn is a stochastic noise and dn is the observation.
Presence of the additive stochastic noise ξn is not generally required for the nudging5

formulation but is, however, essential for the extremely efficient particle filter as it will
follow later. The scalar α defines the strength of the nudging and its choice is usually
based on physical constraints. A strong nudging can yield to a wrong dynamics due to
a fast convergence of the solution to the observation, whereas a weak nudging provides
with the solution that is unconstrained by the observation.10

Usually, the nudging in general circulation models is performed over the ocean (e.g.
Swingedouw et al., 2013). Therefore, when we perform the nudging, it is also done over
the ocean only by nudging sea surface temperature towards the pseudo-observations.

2.3 The extremely efficient particle filter

In the extremely efficient particle filter, like in the particle filter of Sect. 2.1, the model15

probability density is represented by an ensemble of particles (2), and the Bayes the-
orem (3) is used to derive the posterior probability. The model equation, however, is
distinct from Eq. (1). Let the model equation have the stochastic model error denoted
by ξ̂n, which is related to unknown parameters of the model, for example. Then,

ψn = f (ψn−1)+ ξ̂n,20

and the transitional density p(ψn|ψn−1) is the density of ξ̂n with mean f (ψn−1). More-
over, if the model equation has the nudging term like in Eq. (5), one can define the
proposal transition density q(ψn|ψn−1,dn) as the probability density of ξn with mean
f (ψn−1)+αHT (dn−H(ψn−1)). Taking into account both the transitional density and the
proposal transition density when deriving the posterior probability gives the following25

weights
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W n
i = K−1p(dn|ψni )

n∏
r=m+1

p(ψ ri |ψ
r−1
i )

q(ψ ri |ψ
r−1
i ,dn)

. (6)

Here, index m is related to a time tm at which the observation dm – the observation
previous to dn – is available. Therefore, when computing the product in Eq. (6), all the
model states {ψmi ,ψm+1

i , . . . ,ψni } between the two consecutive observations dm and5

dn are taken into account. If the observations are as frequent as the model states then
m+1 = n, otherwisem+1 < n. Note, that the division in the computation of the weights
(Eq. 6) does not lead to singularity since the support of the proposal transition density
q(ψ ri |ψ

r−1
i ,dn) is equal or wider than the one of the transitional density p(ψ ri |ψ

r−1
i ) due

to the presence of the stochastic noise ξr in the model equation (5). For computing the10

weights we take p(dn|ψni ) to be equal to Eq. (4), the transition density to be equal to

p(ψ ri |ψ
r−1
i ) = K−1 exp

[
−1

2
(ψ ri − f (ψ

r−1
i ))TC−1(ψ ri − f (ψ

r−1
i ))

]
,

and the proposal transition density to be equal to

q(ψ ri |ψ
r−1
i ,dn) = K−1 exp

[
−1

2
(ξri )

TΣ−1ξri

]
.

The model error covariances C and Σ for simplicity are taken to be equal.15

Since the nudging does not guarantee small variance in the particles and, conse-
quently, in the importance weights when many degrees of freedom are present, the
extremely efficient particle filter can still become degenerative. Therefore, the model
states are generally adjusted just before the calculation of the weights such that the
weights do not differ substantially afterwards. We, however, leave out this part of “al-20

most equal weights” since the number of degrees of freedom in our application is still
quite small. For a comprehensive explanation of the extremely efficient particle filter
the reader is referred to van Leeuwen (2010); van Leeuwen and Ades (2013).
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3 Description of experimental setup

The three-dimensional Earth system model of intermediate complexity LOVECLIM1.2
(Goosse et al., 2010) used here consists of the atmospheric component ECBILT2 (Op-
steegh et al., 1998), the oceanic component CLIO3 (Goosse and Fichefet, 1999), and
the terrestrial vegetation module VECODE (Brovkin et al., 2002). The atmospheric5

model is a three level quasi-geostrophic model of horizontal resolution T21 that in-
cludes a radiative scheme and a parametrisations of the heat exchanges with the sur-
face. The free-surface ocean model is an ocean general circulation model coupled to
a sea-ice model with horizontal resolution of three by three degrees and 20 unevenly
spaced vertical levels in the ocean. The vegetation module describes annual changes10

in vegetation cover taking into account trees, grass and deserts; its horizontal resolu-
tion matches the resolution of the atmospheric component.

In the experiments, we use pseudo-observations of surface air temperature, to which
we add a Gaussian noise with standard deviation 0.5 ◦C in order to mimic the instru-
mental error. When comparing the reconstructions with the pseudo-observations no15

noise, however, is applied to the pseudo-observations, meaning that the comparison is
done with the truth.

To constrain the model by the particle filters (either with sequential importance re-
sampling or the extremely efficient one), we use the pseudo-observations averaged
on a seasonal scale. The seasonal scale is small enough to provide with detailed cli-20

mate state reconstructions but large enough not to impose the issue of degeneracy of
the particle filters. Moreover, we apply a spatial filter to the particles as in Dubinkina
et al. (2011) before computing the importance weights in order to reduce the number
of degrees of freedom.

In the nudging (either alone or as a part of the extremely efficient particle filter),25

we use the pseudo-observations of monthly mean surface air temperature, since the
nudging does not degenerate and monthly averages are generally the smallest scales
of observations in long-term applications. The nudging is performed over the global
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ocean by introducing a term into the computation of heat fluxes coming from the at-
mosphere to the ocean. The nudging parameter α is chosen such that the heat flux
adjustment due to the nudging is not larger than 50Wm−2. The stochastic error ξn is
constructed as following: empirical orthogonal function (EOF) analysis of the model
error is performed taking into account the instrumental surface temperature records5

HADCRUT3 (Brohan et al., 2006) over the last 150 yr. Then, the noise is a sum of the
first ten modes each multiplied by a random coefficient, and this noise together with
the nudging term is added to the equation of heat fluxes.

In all three data-assimilation methods we use 96 particles, which seems to be suf-
ficient for representing the probability density and is computationally affordable. The10

error covariance of the observations R is computed using the instrumental error and
the error of representativeness, as in Dubinkina et al. (2011), and the model error co-
variance C is simply assumed to be a diagonal matrix with 0.5 ◦C2 on the diagonal.

4 Assimilation of the dense pseudo-observations

In the following experiments, the pseudo-observations of surface air temperature are15

given at every grid cell. Since assimilation of the pseudo-observations over the whole
globe leads to filter degeneracy and assimilation over a small domain does not take
many pseudo-observations into account, we make a compromise by choosing an area
covering the polar cap southward of 30◦S.

We examine the reconstructions of surface air temperature averaged over two do-20

mains: the area southward of 30◦S and the area southward of 66◦S (the top and bottom
panels of Fig. 1). Reasonable reconstructions of surface air temperature are obtained
using either the sequential importance resampling filter (blue curve) or the extremely
efficient particle filter (red curve) over both domains. For the area southward of 30◦S
shown in the top panel of Fig. 1, the correlations for the sequential importance resam-25

pling filter and for the extremely efficient particle filter are 0.95 and 0.98, respectively,
and the root mean square (RMS) errors are 0.07 ◦C and 0.05 ◦C, respectively. The
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nudging performs also very well for the area southward of 30◦S (green curve in the
top panel of Fig. 1) providing with correlation of 0.93 and the RMS error of 0.09 ◦C. But
for the area southward of 66◦S shown in the bottom panel of Fig. 1, its performance
is weaker: correlation is 0.64 and the RMS error is 0.43 ◦C. Moreover, the variance of
the reconstructed anomaly (green curve) is smaller than the variance of the pseudo-5

observations (grey curve). This is due to the fact that the ocean covers a small fraction
of the surface southward of 66◦S; therefore, since the nudging is done over the ocean
only, it has a weaker direct influence on this area and propagation of the signal from
the ocean to the land is not strong enough to lead to high correlations.

For estimating the performance of a data-assimilation method for the ocean recon-10

struction we consider ocean heat content. Figure 2 illustrates that ocean heat content
is not significantly altered by the sequential importance resampling filter. Therefore,
the sequential importance resampling filter does not change the heat budget of the
climate model. Since the same forcing is used for deriving the pseudo-observations
and when performing the data-assimilation experiments, ocean heat content from the15

sequential importance resampling filter is parallel to the pseudo-observations reflect-
ing the influence of different initial conditions during the whole period. The nudging, on
the contrary, has a strong influence on ocean heat content. This is due to the way the
nudging is implemented: it adjusts heat fluxes from the atmosphere to the ocean. Con-
sequently, ocean temperature changes, so does ocean heat content. The extremely20

efficient particle filter obtains ocean heat content that lies between the one from the
nudging and the one from the sequential importance resampling filter and appears to
be the closest to the pseudo-observations. To address the robustness of this result,
we perform four experiments using different initial conditions for each data-assimilation
method and investigate the RMS errors between ocean heat content reconstructed25

by a data-assimilation method and the pseudo-observations. We obtain that the mean
RMS error using the extremely efficient particle filter is 0.008, using the sequential
importance resampling filter it is 0.014, and using the nudging it is 0.013. Therefore,
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ocean heat content from the extremely efficient particle filter has the smallest mean
RMS error.

Next, we investigate the skill of the assimilation methods in reconstructing spatial
features. In order to do that, we compute first empirical orthogonal functions (EOFs) of
the pseudo-observations and project the results of model simulations onto them. Then,5

the corresponding principal components (PCs) and the projections are compared by
means of correlation. We perform four experiments using different initial conditions for
every data-assimilation method. The EOFs are computed for winter period (from May
until October) over the area southward of 60◦S, as we are mainly interested in the
regions that are ice covered or that are close to the ice edge, and over a 21-yr period,10

since it is long enough to capture the main features of the state by the EOFs and short
enough to split one model run in several such periods. Therefore, we divide a 150-yr run
in six 21-yr periods starting from year 1865 and ending in year 1990, skipping the first
15 yr to avoid the bias induced by the initial conditions. Performing the EOF analysis
over six 21-yr periods from four different experiments gives twenty-four correlations for15

every data-assimilation method.
In Fig. 3, we plot mean correlations plus and minus one standard deviation for differ-

ent variables and different data-assimilation methods. When reconstructing surface air
temperature (st) or sea ice concentration (sic) all three methods perform rather well pro-
viding with high correlations, as shown in the left panel of Fig. 3. Even a free model run20

(without data assimilation) has positive correlations, which is due to the employment
of the same forcing when deriving the pseudo-observations. The skill of the extremely
efficient particle filter when reconstructing surface air temperature is only slightly higher
than the skill of the sequential importance resampling filter, as it is seen in the left panel
of Fig. 3. When reconstructing sea ice concentration, however, the extremely efficient25

particle filter shows evident improvement compared to the sequential importance re-
sampling filter. Indeed, as the corrections of heat fluxes from the atmosphere to the
ocean have a strong impact on sea ice concentration, the nudging and the extremely
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efficient particle filter have the higher skills than the sequential importance resampling
filter.

Changes in atmospheric circulation is an important characteristics of past climate
variability (e.g. Lefebvre and Goosse, 2008; Yuan and Li, 2008). Pressure observations
that can be used to constrain the model in order to get reliable estimations of atmo-5

spheric circulation are, however, very limited for paleoclimate applications. Therefore,
we investigate the skill of the atmospheric circulation reconstructions when surface
air temperature is assimilated. We perform the EOF analysis for geopotential height,
the variable in LOVECLIM that represents atmospheric circulation. In the left panel of
Fig. 3, we see that correlations for geopotential height (geopg) are overall positive but10

not significant. To address this issue, we perform experiments with assimilating the
pseudo-observations over a smaller domain: the area southward of 60◦S instead of
the area southward of 30◦S. In the right panel of Fig. 3, we see that correlations for
geopotential height are higher when the assimilation domain is smaller. This is due
to a smaller number of degrees of freedom when assimilating over a smaller domain,15

which means that the particle filters are still close to degeneracy.
To continue with assessment of the performance of a data-assimilation method when

reconstructing the ocean state, we perform the EOF analysis of sea surface salinity
(sss), whose variations play a crucial role in the changes in density and, consequently,
in the oceanic circulation and the vertical stability of the water column (e.g. Martinson,20

1990; Gordon, 1991). In the left panel of Fig. 3, we see that the extremely efficient parti-
cle filter and the sequential importance resampling filter provide with positive and rather
good correlations, taken into account that sea surface salinity is not directly linked to
assimilated surface air temperature. By contrast, sea surface salinity obtained by the
nudging has always negative correlations with the pseudo-observations. In order to25

understand the reason why the pattern of sea surface salinity obtained by the nudg-
ing is opposite to the pseudo-observations, we perform the EOF analysis for ocean
temperature at different depths. As it is seen in Fig. 4, the nudging adjusts ocean tem-
perature near the surface but does not respect the dynamics of the ocean. In particular,
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the nudging term strongly modifies the mixing (not shown) leading to a wrong vertical
ocean temperature profile and to wrong vertical salinity.

5 Assimilation of the sparse pseudo-observations

In the following experiments, we investigate the performance of the data-assimilation
methods when the pseudo-observations are as sparse as the dataset HADCRUT35

of the instrumental surface temperature records over the last 150 yr (Brohan et al.,
2006) by selecting the pseudo-observations at the same locations as the HADCRUT3
dataset. The resolution of these pseudo-observations changes in time: for example, for
year 1850 around 10 pseudo-observations are located in the area southward of 60◦S
and for year 2000 it is about 80. The number of the sparse pseudo-observations in10

the area southward of 60◦S is substantially smaller compared to the area southward
of 30◦S: 80 sparse pseudo-observations against 400 for year 2000, for example. Since
we are interested in the climate state reconstruction over the area southward of 60◦S
and the number of the sparse pseudo-observations in this area is very small, the prior
distribution has to be chosen such that it increases the relative importance of the sparse15

pseudo-observations located in the area 90◦S–60◦S compared to the sparse pseudo-
observations located in the area 60◦S–30◦S or decrease the data-assimilation area.
Here, we keep the prior distribution to be uniform but assimilate the sparse pseudo-
observations over a smaller area: the area southward of 60◦S. The nudging, however,
is still applied over the global ocean.20

In Fig. 5, we plot time series of surface air temperature anomalies averaged over
the area southward of 30◦S (the top panel) and over the area southward of 66◦S
(the bottom panel). Compared to the case of assimilating the dense dataset of the
pseudo-observations, the variance of the anomalies is underestimated, which is due
to the sparse net of the pseudo-observations. Annan and Hargreaves (2012) has also25

observed the decrease in the variance when the pseudo-observations become more
sparse. Nevertheless, all three data-assimilation methods estimate still reasonably well

57

http://www.clim-past-discuss.net
http://www.clim-past-discuss.net/9/43/2013/cpd-9-43-2013-print.pdf
http://www.clim-past-discuss.net/9/43/2013/cpd-9-43-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


CPD
9, 43–74, 2013

An assessment of
climate state

reconstructions

S. Dubinkina and
H. Goosse

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

surface air temperature averaged over the area southward of 30◦S: correlations are
0.86, 0.85, and 0.88 for the nudging, the sequential importance resampling filter, and
the extremely efficient particle filter, respectively, while for the model without any data
assimilation correlation is 0.78. In the area southward of 66◦S where only a few pseudo-
observations are located, we have a good estimation of the trend but not of the vari-5

ance. Moreover, the trend reconstruction is achieved mainly due to the well-defined
forcing not due to data assimilation. Indeed, when no data assimilation is used cor-
relation is 0.56 and correlations obtained by the data-assimilation methods are 0.58,
0.59, and 0.62 for the nudging, the sequential importance resampling filter, and the ex-
tremely efficient particle filter, respectively. It should be mentioned, however, that when10

the forcing is unknown, the trend can be still estimated due to data assimilation, see
Dubinkina et al. (2011).

In Fig. 6 we see that ocean heat content obtained by the extremely efficient parti-
cle filter appears to be the closest to the pseudo-observations, and ocean heat con-
tent obtained by the sequential importance resampling filter is parallel to the pseudo-15

observations. As in the case of assimilating the dense pseudo-observation dataset,
we perform five experiments using different initial conditions for each data-assimilation
method in order to check the robustness of this result. From these experiments we
obtain the following mean RMS errors: 0.007 for the nudging, 0.008 for the extremely
efficient particle filter, and 0.009 for the sequential importance resampling filter. Hence,20

the mean RMS errors are comparable, unlike in the case of assimilating the dense
pseudo-observations when the extremely efficient particle filter provides with the mean
RMS error much smaller than any other method (0.008 against 0.013 or 0.014).

For examining the spatial skill of the data-assimilation methods, we perform the
EOF analysis as described in Sect. 4, but since resolution of the sparse pseudo-25

observations depends on time, the six 21-yr periods are not equivalent anymore.
Therefore, we perform five runs for every data-assimilation method using different initial
conditions, where one run consists of 96 particles as before. We compare every 21-yr
period separately computing correlations between first PCs of the dense dataset of the
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pseudo-observations and projections of model simulations onto the corresponding first
EOFs of the pseudo-observations. Mean and standard deviation are computed over
five correlations.

Figure 7 illustrates that the extremely efficient particle filter provides overall with
higher correlations than any other method when reconstructing surface air tempera-5

ture. Compared to the case of assimilating the dense pseudo-observation dataset, as-
similation of the sparse pseudo-observations results in smaller mean correlations and
larger standard deviations, except for the period 1970–1990, at which many pseudo-
observations are available.

In Fig. 8, we see that even for the end of the 19th century, when the pseudo-10

observations are very sparse, correlations given by the extremely efficient particle filter
and by the sequential importance resampling filter are quite reasonable for sea ice con-
centration, unlike the correlations given by the nudging. Moreover, the extremely effi-
cient particle filter reconstructs sea ice concentration better than the sequential impor-
tance resampling filter, like in the case of assimilating the dense pseudo-observations.15

From Fig. 9 we see that the data-assimilation methods do not constrain the model
well enough in order to have reliable estimations of atmospheric circulation. Only in the
period 1970–1990 with many pseudo-observations, correlations improve and become
comparable to the correlations for geopotential height when assimilating the dense
pseudo-observation dataset over the area southward of 60◦S (the right panel of Fig. 3).20

When reconstructing sea surface salinity, which is shown in Fig. 10, the extremely ef-
ficient particle filter performs quite well together with the sequential importance resam-
pling filter. Over some periods the extremely efficient particle filter gives higher correla-
tions, over other periods it is the sequential importance resampling filter that provides
with higher correlations. The nudging performs worse than any particle filter, and over25

some periods the sea surface salinity pattern obtained by the nudging is opposite to
the pseudo-observations. This result is, however, less persistent when assimilating the
sparse pseudo-observations than when assimilating the dense pseudo-observations,
see Fig. 3.

59

http://www.clim-past-discuss.net
http://www.clim-past-discuss.net/9/43/2013/cpd-9-43-2013-print.pdf
http://www.clim-past-discuss.net/9/43/2013/cpd-9-43-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


CPD
9, 43–74, 2013

An assessment of
climate state

reconstructions

S. Dubinkina and
H. Goosse

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

6 Conclusions

We have shown that the extremely efficient particle filter provides with quite encour-
aging results: global variables like ocean heat content and surface air temperature
averaged over large domains are well estimated. When assimilating the dense pseudo-
observation dataset, the extremely efficient particle filter provides with reasonable re-5

constructions of not only variables that are directly linked to the pseudo-observations
of surface air temperature, as surface air temperature and sea ice concentration, but
also variables as geopotential height and sea surface salinity. Reliable reconstructions
of the latter variables are essential for paleoclimate applications since the observations
of pressure and salinity are limited there. Moreover, these reconstructions give good10

perspectives for initializing climate predictions.
When assimilating the sparse pseudo-observations that are given at the same lo-

cations as the dataset of instrumental surface temperature records HADCRUT3, the
performance of the extremely efficient particle filter is weaker due to the limited num-
ber of the pseudo-observations. Nevertheless, even at the end of the 19th century, the15

reconstructions of surface air temperature and of sea ice concentration are quite good.
The reconstructions of geopotential height and of sea surface salinity display, however,
a lower skill.

Overall, the extremely efficient particle filter achieves better or equivalent results
compared to the sequential importance resampling filter. To be more precise, surface20

air temperature reconstructed by the sequential importance resampling filter has al-
ready high correlations with the pseudo-observations, and the extremely efficient parti-
cle filter introduces only a slight improvement. In reconstructing sea ice concentration,
however, a clear improvement is accomplished by the extremely efficient particle filter
compared to the sequential importance resampling filter. When it comes to the recon-25

struction of variables that are not directly linked to the pseudo-observations of surface
air temperature as geopotential height and sea surface salinity, the performance of
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the sequential importance resampling filter is equivalent to the performance of the ex-
tremely efficient particle filter.

Even though the nudging used here provides with good reconstructions of surface
air temperature and of sea ice concentration, it has the drawback of not respecting the
dynamics of the ocean, which results in the wrong vertical profile of ocean temperature5

and, consequently, in wrong pattern of sea surface salinity. Nudging of salinity and
ocean temperature over the depth could be a possible solution to this problem, but it
should be kept in mind that observations of deep ocean temperature and salinity are
available only for the recent past.

The improvement brought by the extremely efficient particle filter is apparent, which10

makes a strong argument for the use of the extremely efficient particle filter in the
climate state reconstruction. Some developments, however, are still needed in order
to get reliable estimations of variables that are not strongly linked through the model
dynamics to the assimilated surface air temperature such as geopotential height and
salinity.15
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Fig. 1. Grey line: pseudo-observation of surface air temperature anomalies;green line: surface air temperature

anomalies obtained using the nudging; blue line: surface air temperature anomalies obtained using the sequen-

tial importance resampling; red line: surface air temperature anomalies obtained using the extremely efficient

particle filter. Correlations and the RMS errors are displayed in upper leftcorners. Top: average over the area

southward of30◦S; Bottom: average over the area southward of66
◦

S.

able reconstructions of surface air temperature are obtained using either the sequential importance

resampling filter (blue curve) or the extremely efficient particle filter (red curve) over both domains.225

For the area southward of30◦S shown in the top panel of Figure 1, the correlations for the sequential

importance resampling filter and for the extremely efficientparticle filter are0.95 and0.98, respec-

tively, and the root mean square (RMS) errors are0.07◦C and0.05◦C, respectively. The nudging

performs also very well for the area southward of30◦S (green curve in the top panel of Figure 1)

providing with correlation of0.93 and the RMS error of0.09◦C. But for the area southward of66◦S230

shown in the bottom panel of Figure 1, its performance is weaker: correlation is0.64 and the RMS

error is0.43◦C. Moreover, the variance of the reconstructed anomaly (green curve) is smaller than

the variance of the pseudo-observations (grey curve). Thisis due to the fact that the ocean covers a

small fraction of the surface southward of66◦S; therefore, since the nudging is done over the ocean

only, it has a weaker direct influence on this area and propagation of the signal from the ocean to the235

land is not strong enough to lead to high correlations.

For estimating the performance of a data-assimilation method for the ocean reconstruction we

consider ocean heat content. Figure 2 illustrates that ocean heat content is not significantly altered

by the sequential importance resampling filter. Therefore,the sequential importance resampling filter

8

Fig. 1. Grey line: pseudo-observation of surface air temperature anomalies; green line: sur-
face air temperature anomalies obtained using the nudging; blue line: surface air temperature
anomalies obtained using the sequential importance resampling; red line: surface air tempera-
ture anomalies obtained using the extremely efficient particle filter. Correlations and the RMS
errors are displayed in upper left corners. Top: average over the area southward of 30◦ S; Bot-
tom: average over the area southward of 66◦ S.
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Fig. 2. Grey line: pseudo-observation of ocean heat content; green line: ocean heat content
obtained using the nudging; blue line: ocean heat content obtained using the sequential im-
portance resampling filter; red line: ocean heat content obtained using the extremely efficient
particle filter.
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Fig. 3. Correlations between first PCs of the pseudo-observations and projections of the model
simulations onto the corresponding first EOFs of the pseudo-observations for different vari-
ables: st is for surface temperature, sic is for sea ice concentration, geopg is for geopotential
height, sss is for sea surface salinity. EOFs are computed for May–October of twenty-four 21-yr
periods over the area southward of 60◦ S. The circle is the mean correlation for a free model run;
the star is the mean correlation for the model simulations using the nudging; the square is the
mean correlation for the model simulations using the sequential importance resampling filter;
the cross is the mean correlation for the model simulations using the extremely efficient par-
ticle filter. Error bars correspond to one standard deviation. Left: the pseudo-observations are
assimilated over the area southward of 30◦ S; Right: the pseudo-observations are assimilated
over the area southward of 60◦ S.
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Fig. 4. Correlations between first PCs of the pseudo-observations and projections of the model
simulations onto the corresponding first EOFs of the pseudo-observations for ocean temper-
ature at different depths. EOFs are computed for May–October of six 21-yr periods over the
area southward of 60◦ S. The star is the mean correlation for the model simulations using the
nudging; the square is the mean correlation for the model simulations using the sequential im-
portance resampling filter; the cross is the mean correlation for the model simulations using the
extremely efficient particle filter. Error bars correspond to one standard deviation.

68

http://www.clim-past-discuss.net
http://www.clim-past-discuss.net/9/43/2013/cpd-9-43-2013-print.pdf
http://www.clim-past-discuss.net/9/43/2013/cpd-9-43-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


CPD
9, 43–74, 2013

An assessment of
climate state

reconstructions

S. Dubinkina and
H. Goosse

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

1860 1880 1900 1920 1940 1960 1980
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Time, years

S
ur

fa
ce

 a
ir 

te
m

pe
ra

tu
re

 a
no

m
al

y

Area southward of 30°S

 

 

Pseudo−observations
Nudging, Corr=0.86, RMS=0.10

1860 1880 1900 1920 1940 1960 1980
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Time, years

S
ur

fa
ce

 a
ir 

te
m

pe
ra

tu
re

 a
no

m
al

y

Area southward of 30°S

 

 

Pseudo−observations
SIR, Corr=0.85, RMS=0.10

1860 1880 1900 1920 1940 1960 1980
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Time, years

S
ur

fa
ce

 a
ir 

te
m

pe
ra

tu
re

 a
no

m
al

y

Area southward of 30°S

 

 

Pseudo−observations
EEPF, Corr=0.88, RMS=0.09

1860 1880 1900 1920 1940 1960 1980
−1.5

−1

−0.5

0

0.5

1

Time, years

S
ur

fa
ce

 a
ir 

te
m

pe
ra

tu
re

 a
no

m
al

y

Area southward of 66°S

 

 

Pseudo−observations
Nudging, Corr=0.58, RMS=0.43
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Fig. 5. Same as Figure 1, but using the sparse pseudo-observations.

is 0.56 and correlations obtained by the data-assimilation methods are0.58, 0.59, and0.62 for the

nudging, the sequential importance resampling filter, and the extremely efficient particle filter, re-

spectively. It should be mentioned, however, that when the forcing is unknown, the trend can be still

estimated due to data assimilation, see Dubinkina et al. (2011).335

In Figure 6 we see that ocean heat content obtained by the extremely efficient particle filter appears

to be the closest to the pseudo-observations, and ocean heatcontent obtained by the sequential

importance resampling filter is parallel to the pseudo-observations. As in the case of assimilating the

dense pseudo-observation dataset, we perform five experiments using different initial conditions for

each data-assimilation method in order to check the robustness of this result. From these experiments340

we obtain the following mean RMS errors:0.007 for the nudging,0.008 for the extremely efficient

particle filter, and0.009 for the sequential importance resampling filter. Hence, themean RMS

errors are comparable, unlike in the case of assimilating the dense pseudo-observations when the

extremely efficient particle filter provides with the mean RMS error much smaller than any other

method (0.008 against0.013 or 0.014).345

For examining the spatial skill of the data-assimilation methods, we perform the EOF analysis

as described in Section 4, but since resolution of the sparsepseudo-observations depends on time,

the six 21-year periods are not equivalent anymore. Therefore, we perform five runs for every

data-assimilation method using different initial conditions, where one run consists of 96 particles as

before. We compare every 21-year period separately computing correlations between first PCs of350

the dense dataset of the pseudo-observations and projections of model simulations onto the corre-

13

Fig. 5. Same as Fig. 1, but using the sparse pseudo-observations.
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Fig. 6. Same as Fig. 2, but using the sparse pseudo-observations.
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Fig. 7. Correlations between first PCs of the pseudo-observations and projections of model
simulations onto the corresponding first EOFs of the pseudo-observations for surface air tem-
perature for different time periods. EOFs are computed over the area southward of 60◦ S for
May–October of 21-yr periods from five runs. The star is the mean correlation obtained using
the nudging; the square is the mean correlation obtained using the sequential importance re-
sampling filter; the cross is the mean correlation obtained using the extremely efficient particle
filter. Error bars correspond to one standard deviation.
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Fig. 8. Same as Fig. 7, but for sea ice concentration.

72

http://www.clim-past-discuss.net
http://www.clim-past-discuss.net/9/43/2013/cpd-9-43-2013-print.pdf
http://www.clim-past-discuss.net/9/43/2013/cpd-9-43-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


CPD
9, 43–74, 2013

An assessment of
climate state

reconstructions

S. Dubinkina and
H. Goosse

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

1865−1885 1886−1906 1907−1927 1928−1948 1949−1969 1970−1990
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

C
or

re
la

tio
n

Projections onto the first EOF of atmospheric circulation (May−Oct) over area southward of 60°S

 

 

Nudging
SIR
EEPF

Fig. 9. Same as Fig. 7, but for geopotential height.
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Fig. 10. Same as Fig. 7, but for sea surface salinity.
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